
Taejoon Kwon
University of Texas at Austin

Xenopus Bioinformatics Workshop, May 2014
http://www.ebay.co.uk/itm/I-Hate-Programming-T-shirt-PC-IT-Computer-Code-Programmer-Slogan-S-XXL-6-cols-/121326428845

http://37.media.tumblr.com/tumblr_ly0dpda7ns1r7t60no1_500.jpg

http://rlv.zcache.com/i_am_a_programmer_not_a_magician_t_shirts-r9395444599414ccc8b320b64c89a13a8_wig7n_512.jpg

http://rlv.zcache.co.uk/i_am_a_biochemist_not_a_magician_mousemat-r6acca9a78acd4ea883e32229b9d6c8f6_x74vi_8byvr_324.jpg

http://www.homeschool-activities.com/images/slime-potion.jpg

Too much recipes!?!?

http://www.lackuna.com/wp-content/uploads/2013/01/programming.jpg

My personal journey in programming

• ~ 1994: C (and little bit of BASIC)

• 1994 ~ 1995: Fortran(!)
• 1996 ~ 1998: Visual C++ (and little bit of Java)

• 1998 ~ 2008: PERL
– 2002 ~ 2005: Java (in the company)

– 2005 ~ 2006: R & MATLAB (MPhil in Comp. Bio)

• 2008 ~ current: Python
– & little bit of R, PHP5, JavaScript, C# & Ruby

Programming language – my opinion

• C/C++ : Most powerful. Period.
– Need to know a lot about computer itself (i.e. memory

allocation).
– Steep learning curve (even you know another language).

• Java & C# : Powerful & comprehensive.
– Need to understand ‘object-orient programming’.
– Ideal for ‘huge project’, but too ‘heavy’ to use in small

tasks.

• JavaScript & PHP: A language for the web. Limited.
• Unix shell scripting (BASH, TCSH): A language for the

command line. Limited.

Programming language – my opinion

• PERL: Powerful in text manipulation
– Check out Lincoln Stein’s article “How PERL save the

human genome” in the wiki.
– Still widely used in bioinformatics (i.e. EnsEMBL, GBrowse)

• Ruby: “New Kids On The Block”
– Hybrid of PERL (flexibility) and Python (object oriented

structure); but little bit premature yet.

• MATLAB: Powerful in machine learning & statistics.
– Expensive (many institutes may have a site license, though)

• R: Powerful in statistics.
– Little bit ‘strange’ syntax; steep learning barrier.

• If you can do it with python,
– You can do it with PERL
– You can do it with Ruby
– You can do it with MATLAB or R
– You can do it with C or C++
– You can do it with Java or C#
– (but may not with BASH, JavaScript, PHP)

• Just pick any of them, learn it, and use it everyday.
Soon you will become a programmer (or a magician).

• Don’t be stressed to google it when you have a
question. All programmers also do it.
– It is same to check a protocol before the experiment. I

don’t believe any biologist can memorize all parts of
“Molecular Cloning” or “Xenopus handbook”.

Why Python?
• Compared to C/C++/Java/C#

– Easier to learn.
– More suitable for ‘simple tasks’ that we are interested in.

• Compared to Ruby
– More mature (personal opinion).

• Compared to PERL
– Easier to organize codes (more object-oriented).
– All-in-one package (free from module dependency).
– Bioinformatics community with python is getting bigger.
– Useful libraries: numpy/scipy & matplotlib
– Personally I don’t want to go back to PERL.

• Python3 has some good features, but many libraries do not
support it yet. We will use python-2 instead here.

Two ways to work with python

• Traditional way
– Write a code with your favorite text editor.
– Run the code with ‘> python <my_code.py>’ command.

• Interactive way
– Execute ‘> python’ in your command terminal.
– Do the programming inside ‘interactive’ shell.
– Check out ipython & its notebook function at

http://ipython.org/notebook.html

• Find more comfortable way for yourself.

http://ipython.org/notebook.html

Ok, let’s get to work!

http://www.maniacworld.com/get-to-work.jpg

• Make your code beautiful.
– It is like to “make your bench clean”. Nobody wants to do

the experiment in dirty bench, even it is actually YOU who
to make all those messes.

• If you don’t have any preference, just follow well-
established coding style. There is reasons for this
style, and you may know them in the future.
– http://legacy.python.org/dev/peps/pep-0008/
– http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

• Spend a time before naming anything (variables,
functions, filenames)
– test1.py, test2.py, test3.py, …
– taejoon1.py, taejoon2.py, ….

http://legacy.python.org/dev/peps/pep-0008/
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

Indentation matters in python
(be aware if you have experienced in other languages)

C code
Python code

Braces

Semicolon
Indentation
 defines a block

Major components in programming

• Variables: “How to store data?”
– Scalar: number, string
– Array/List
– Dictionary/Hash

• Control flows: “How to process data to get a result?”
– Conditions (if … then … else …)
– Loop (for … while …)

• Operations & functions
• Input/Output: “How to read data/write result?”

80 built-in functions

https://docs.python.org/2/library/functions.html

Numbers: integer & float

https://docs.python.org/2/tutorial/introduction.html

List/Array

Use bracket!

String

Dictionary (a.k.a Hash) & Set

Advanced: modules

Flow control: if… elif … else …
(comparison: ==, !=, >, <, >=, <=)

Flow control: for

Input & Output

• First, you need to open a
file by “open()”
– open(<filename>,’r’) for

reading.

• Then, read contents by
“read()”
– Or use the iterator (see next

slide)

• Then, close the file with
“close()”

• First, you need to open a file
by “open()”
– open(<filename>,’w’) for

writing.

• Then, write stuff by “write()”
– f.write(“%d\n”%(my_integer))
– sys.stdout.write() same as

print()
– sys.stderr.write()

• Then, close the file with
“close()”

Codes I have used almost everyday
#!/usr/bin/env python
Import os
Import sys

filename_fa = sys.argv[1]

seqlen = dict()
seq_h = ‘’
f_fa = open(filename_fa,’r’)
for line in f_fa:
 if(line.startswith(‘>’)):
 seq_h = line.strip().lstrip(‘>’)
 seq_len[seq_h] = 0
 else:
 seq_len[seq_h] += len(line.strip())
f_fa.close()

#!/usr/bin/env python
Import os
Import sys

filename_tsv = sys.argv[1]

f_tsv = open(filename_tsv,’r’)
f_out = open(‘results.txt’,’w’)
for line in f_tsv:
 if(line.startswith(‘#’)):
 continue
 tokens = line.strip().split(“\t”)
 if(tokens[0].upper().find(‘BMP4’) > 0):
 f_out.write(‘%s\t%s\n’%(tokens[0],tokens[2]))
f_tsv.close()
f_out.close()

REALLY advanced: regular expression
• The way to perform ‘pattern matching’ with strings.
• If built-in function of string is not enough for your job…

– split(), replace(), strip(), startswith(), endswith(), …

• Google’s python course is good place to start (see below URL).
• Don’t cry if you don’t understand what they are talking about;

it is not easy to get it at first sight.

https://developers.google.com/edu/python/regular-expressions

https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions

http://www.oyemagazine.org/sites/default/files/imagecache/blog_slideshow/article/Time-to-practice-what-you-learned.gif

Rosalind – “there is a prize!”

http://rosalind.info/classes/129/
To enroll: http://rosalind.info/classes/enroll/42fa27a979/

http://rosalind.info/classes/129/
http://rosalind.info/classes/enroll/42fa27a979/

Problem #1 – Calculate N50 of genome

• Input
– A FASTA file of X. laevis genome scaffolds (JGI 7.1)
– A FASTA file of X. tropicalis genome (JGI 8.0)

• Output
– The length of concatenated scaffolds
– The length of longest scaffolds
– N50 of scaffolds
– The number of ‘N’s

• You may need
– Variables: dictionary, string
– open(), startswith(), dict(), split(‘’), sort(), len(), int(), print()

Problem #2 – Orthologs of X. tropicalis

• Input
– Orthology table of EnsEMBL BioMART (provided)
– Or you can make it by yourself at

http://www.ensembl.org/biomart/martview

• Output
– Number of orthologous genes per ortholog type (i.e. one-to-one, one-

to-many, etc) between human and X. tropicalis

• You may need
– open(), startswith(), split(), dict()

Problem #3 – Extract Dev. Stage expression

• Input
– Developmental stage expression data (Yanai,

2011;provided)
– Gene of interest (EnsID or gene name)

• “How can I apply Problem #3 solution here?”

• Output
– Expression signals of your interesting gene
– “How to make it generalized?”
 ./show-me-exp.py Ago2 show Ago2 expression pattern

Tomorrow morning – Visualization, etc

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Too much recipes!?!?
	My personal journey in programming
	Programming language – my opinion
	Programming language – my opinion
	Slide Number 10
	Why Python?
	Two ways to work with python
	Ok, let’s get to work!
	Slide Number 14
	Indentation matters in python�(be aware if you have experienced in other languages)
	Major components in programming
	80 built-in functions
	Numbers: integer & float
	List/Array
	String
	Dictionary (a.k.a Hash) & Set
	Advanced: modules
	Flow control: if… elif … else …�(comparison: ==, !=, >, <, >=, <=)
	Flow control: for
	Input & Output
	Codes I have used almost everyday
	REALLY advanced: regular expression
	Slide Number 28
	Rosalind – “there is a prize!”
	Problem #1 – Calculate N50 of genome
	Problem #2 – Orthologs of X. tropicalis
	Problem #3 – Extract Dev. Stage expression
	Tomorrow morning – Visualization, etc

