
Biologists at the computer 

HMS 
Leon Peshkin 

pesha@hms.harvard.edu 

mailto:pesha@hms.harvard.edu




Setup 

 
 
 
http://cbi.med.harvard.edu/people/peshkin/sb302/fragments1.zip 

Putty  
 
 
 
 
WinSCP 





Anatomy 
• Abstraction data/code/image/music 
• Modularity = objects = client/server 

 



Introduction to UNIX/Linux & the 
Orchestra Cluster 

• Become familiar with UNIX/Linux OS 
• Manipulate files and folders 
• Run bioinformatics programs from the 

“command line” 
• Running jobs on Linux Cluster 



Outline 

• Getting Started: What's Unix? 
• Getting In: Logging into Unix 
• Getting Stuff Done: Commands 
• Getting Around: The Filesystem 
• Getting Fancy: Complex Commands 
• Getting CPU Time: Using the Cluster 



UNIX/Linux: What is it? 

• UNIX is an operating system (OS) 
– An OS is a set of files/programs that control and 

organize the resources of a computer. 
• UNIX comes in many flavors and runs on many 

different architectures (types of computer 
hardware). 

• UNIX is called an interactive timesharing 
system. 

• Linux is a kind of UNIX. 
  
Examples of OSs (winxp, mac osx, linux, solaris) 



Why use it? 

• Many core bioinformatics tools were developed 
for UNIX (BLAST, PHRAP, GCG/EMBOSS, 
HMMer, etc.) 

• UNIX is a multi-user, multitasking, robust OS 
designed for networking. 

• Excellent programming tools available that can 
be implemented without developing a GUI 
(Graphical User Interface). 

• Widely used and many open source projects 
exist 
"Good composers borrow; great composers steal." 
       -Igor Stravinsky 

 



UNIX Flavors 

-Commercial  
• Solaris (Sun Microsystems)  
• AIX (IBM) 
• HP-UX (Hewlett Packard)  
• Tru64 Unix (Compaq/HP)  
• Mac OS X (Apple)  
-Open Source (~Free)  
• FreeBSD  
• BSD/Other – Darwin/NetBSD (Intel, PowerPC) 
• Linux (Intel, Alpha, Sun Sparc, PowerPC, ARM, Amiga)  

– There are many kinds of Linux (which some call GNU/Linux) 
– We use RedHat 

You will (usually) need to download a separate program 
(binary) to run on Windows, Mac, and each kind of UNIX. 



Outline 

• Getting Started: What's Unix? 
• Getting In: Logging into Unix 
• Getting Stuff Done: Commands 
• Getting Around: The Filesystem 
• Getting Fancy: Complex Commands 
• Getting CPU Time: Using the Cluster 



How to connect or “login” 

• You need your login name (user name) and password. 
• Generally, UNIX account administrators will give you an 

initial password 
– change it when you first login 

• Many people can be logged in concurrently (multi-user)  
• People can run many jobs concurrently (multi-tasking) 
• orchestra, the RITG cluster, requires secure connections 

– Use a program that supports “SSH”, the secure shell protocol 
(which encrypts data flow between computers)  



SSH Clients 

WIN 
• Putty (http://www.chiark.greenend.org.uk/~sgtatham/putty/)  

• Teraterm (http://hp.vector.co.jp/authors/VA002416/teraterm.html)  

• SecureCRT (http://www.fas.harvard.edu/cgi-bin/software/download.pl)  

MAC 
• Terminal.app (Apple OSX) 
• BetterTelnet (http://www.cstone.net/~rbraun/mac/telnet/)  

• NiftyTelnet (http://www.niftytelnet.org)  

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://hp.vector.co.jp/authors/VA002416/teraterm.html
http://www.fas.harvard.edu/cgi-bin/software/download.pl
http://www.cstone.net/~rbraun/mac/telnet/
http://www.niftytelnet.org/


The SSH client 

• Putty.exe 
• Icon on the desktop 
• Double click to 

launch 
 

• Type in hostname 
and select port OR 
choose from Saved 
Sessions 



Terminal Window 

From here on, it's the same whether you use SSH, another program, 
or a monitor directly connected to a UNIX machine 



Terminal login 



Logging in: 1st Time 

• Connect to 
ssh orchestra.med.harvard.edu 

• To change your password (we won't do this today): 
passwd 

• To logout: 
logout/exit 



Exercise 1 - Logging in 

• Login to portal 
• Don't logout - we have much more to do! 



Outline 

• Getting Started: What's Unix? 
• Getting In: Logging into Unix 
• Getting Stuff Done: Commands 
• Getting Around: The Filesystem 
• Getting Fancy: Complex Commands 
• Getting CPU Time: Using the Cluster 



Commands 

• Pass commands to UNIX by typing at the  
“command line”, also known as the "shell". 

• Many bioinformatics programs have command 
line interfaces: BLAST, hmmer, EMBOSS, etc. 

• Use commands to: 
– Move files around 
– Look at files 
– Search files 
– Much more 

• STOP a command with Control-C 



The Shell 

• User's interface with the rest of the system  
– Writes a prompt (like "orchestra>") 
– Waits for user input 
– Interprets user's (keyboard) commands  
– Executes one or more programs 
– Writes results and errors (or nothing at all) to 

the terminal window 
– Writes another prompt... 

• The UNIX "butler" 



Anatomy of the UNIX OS 
You don't 
care about 
this part 



Levels of Representation 
High Level Language 

Program 

Assembly  Language 
Program 

Machine  Language 
Program 

Control Signal 
Specification 

Compiler 

Assembler 

Machine Interpretation 

temp = v[k]; 
v[k] = v[k+1]; 
v[k+1] = temp; 

lw $15, 0($2) 
lw $16, 4($2) 
sw $16, 0($2) 
sw $15, 4($2) 

0000 1001 1100 0110 1010 1111 0101 1000 
1010 1111 0101 1000 0000 1001 1100 0110  
1100 0110 1010 1111 0101 1000 0000 1001  
0101 1000 0000 1001 1100 0110 1010 1111  

° 
° 

ALUOP[0:3] <= InstReg[9:11] & MASK 

Interpreter 



More on the Shell 

• Shell commands can take flags and arguments. 
• Shells can use wildcards ("globs") as arguments.  
• Shells have a standard input (the keyboard) and 

output (the screen), which can be redirected. 
• The shell is also a programming language that 

can handle variables, loops, etc.  
• There are many different shells – sh, bash, csh, 

tcsh, ksh, zsh.  They differ only in minor details. 
• The shell is case sensitive 

 



Anatomy of a Command 

• Command [flags] [arguments] 
– Action [modifications] [object] 
– What to do [how to do it] [what to do it to] 

• Command: what you want to do 
– The name of the program, like "clustalw" 
– Command must have a space after it 

(In general, separate things by spaces) 



Anatomy of a Command 

• Flags – “how to do it” 
– Usually start with - or -- 
– Often just a dash and a letter or word: ls -l 
– May have arguments (blastall -p blastp) 

• Arguments – “what to do it to” 
– Often one or more filenames or directories 
– Glob: *.html means all files ending with .html 
– Parameters: grep 'some_text' myfile 



Anatomy of a Command 

• Flags and arguments may be optional, 
depending on the command 
– ls  list current directory contents 
– ls -l  ...in long format 

   (which gives "permissions") 
– ls a b list files (or directories) a and b 
– ls -l a b ...in long format 

• Command example: 
orchestra> blastall -p blastp -d nr -i 
in.fasta -o blast.out -e 1e-5 -v 10 -b 5 

 



Playing with Files 

• cp – copy 
– cp file1 file2 creates file2 
– cp file1 dir - creates dir/file1 
– cp file1 dir/file2 - creates dir/file2 

• mv – move (rename - sort of like cp) 
• rm – remove (delete) 
• touch – change file timestamp  
   OR create empty file 
Warning: cp and mv will overwrite existing files! 
• man – manual page (also try info on Linux) 



Exercise 2 - Simple Commands 

1. Create a file named alice with touch 
2. Copy it to a new file named bert 
3. Rename bert to Alex (Alex, not alex!)  
4. See what files are in the directory 

1. How big are they? 
2. List just one file in long format 
3. Are there any "hidden" files? (ls -a) 
4. List all files starting with "a" (Do you get 1 or 2?) 

5. Delete a file 
6. See options to BLAST: type blastall - 



Outline 

• Getting Started: What's Unix? 
• Getting In: Logging into Unix 
• Getting Stuff Done: Commands 
• Getting Around: The Filesystem 
• Getting Fancy: Complex Commands 
• Getting CPU Time: Using the Cluster 



The UNIX Filesystem 

• File system is a branching tree 
• Folders contain: 

– Other folders, and/or  
– Files (text, Word, HTML, "binary", ...) 

• Root directory (folder) is named “/”. 
• Other directories have names like dir1, 

my_work, or Important_Data 
• You are always "in" a "working directory" 
• Join directories with "/" to show nesting: 

 
–/home/lp28/sb302 
 



Filesystem Tree 



Filesystems: UNIX and Windows 
• Same info 
• Different 

way of 
showing it 



UNIX & Windows, cont. 

• "Details" view 



UNIX vs. Win: Changing Directories 

• Same operations 
• Different ways of showing it 



UNIX vs. Win: Make a directory 



Home Directory 

• Your personal file space  
• When you login, this is your working directory 
• Read, write, and delete files here  

– Or in any directory inside this directory 
– Not true everywhere 

• You can delete everything! 
– But it won't break anybody else's stuff or the overall 

system 
• On orchestra, user fred’s home directory is 
/home/fred  
– I.e., directory "fred" inside "home" inside "/" 



Getting Around the Filesystem 

• pwd - where am I?  
• cd – change directory 
• ls - list directory(ies) and/or 
files 

• mkdir - make directory 
• rmdir - remove a directory 
 
~ - home directory 
. - current directory 
.. - one directory up from . 

 



Many Ways to Refer to a File 

• If user fred logs in and does cd mydir, all of the 
following refer to the file myfile in that directory: 
– myfile 
– ./myfile 

– /home/fred/mydir/myfile ("Full path" starts with /) 
– ~/mydir/myfile 
– ../mydir/myfile (or ../../home/fred/myfile) 

• Referring to file myfile2 in sub-directory dir2: 
– dir2/myfile2 
– /home/fred/mydir/dir2/myfile2 
– ~/mydir/dir2/myfile2 

 
 



Naming Files II 

• Up one directory and down into a different one: 
– ../other_dir/file3 

– /n/home/fred/other_dir/file3 

– ~/other_dir/file3 

• Use any of these in a command: 
– mv myfile ~/upfile ../other_dir/file3 dir4 

• Commands can also have paths 
– ls actually does /bin/ls 

(Unix magically looks in the right place for built-in commands) 
– ../my_program –I ../some_dir/myfile 

 

 

 



Exercise 3 

1. What directory are you in? 
2. Copy the file unixclass.tar.gz from /usr/tmp to your 

home directory 
3. Copy a file into /usr/tmp (but don't overwrite anything!) 
4. Delete the file from /usr/tmp 
5. Make a new directory mydir 

1. Move two files into mydir 
2. Make copies of them (with new names) in mydir 

6. List all the files in mydir AND your home directory 
using one command 

7. Now move into mydir and list them again 



Working with files 

• more - Scroll through a file page by page. (Works even 
with files that are too big to be opened by a text editor.)  

• head - View top 10 lines of a file. head -n 3 views 3 lines  
• tail - View the tail (bottom) of a file. tail -f to view a 

growing file.  
• wc - Count words, lines and characters in a file  
• grep - Filter a file for lines matching (or not matching) a 

pattern 
• gzip (gunzip) - Compress (uncompress) a file.  
• tar - Archive a whole directory into one file (or unarchive) 
 
Many programs (wc, grep, etc.) can work on multiple files 



grep 

• Grep searches for lines of text that match a 
specific pattern 

% grep 'gene' myfile 
– Prints any line containing “gene” in file myfile 
– Also "genetic" or "Eugene" 
– NOT "Gene" or "gENe" (use grep -i for that) 
– Putting quotes around the search string let you look 

for spaces or special characters 
• grep -v 'gene' myfile 

– prints lines NOT containing "gene" 



Exercise 4 

1. Uncompress and unarchive unixclass.tar.gz 
1. gunzip unixclass.tar.gz 
2. tar –xvf unixclass.tar 

2. Move into unixclass 
3. Fun with sequence files 

1. Read the first sequence from moreseqs 
2. Read the last sequence from moreseqs 
3. Get all the FASTA IDs from moreseqs (hint: what do 

all ID lines have in common?) 
4. Is the sequence CLERH in the file? ABCDE? 
5. How many lines are in moreseqs? What about seqs 

and moreseqs together? 



Outline 

• Getting Started: What's Unix? 
• Getting In: Logging into Unix 
• Getting Stuff Done: Commands 
• Getting Around: The Filesystem 
• Getting Fancy: Complex Commands 
• Getting CPU Time: Using the Cluster 



Command line editing 

Until you press <Enter>, you can go back over the 
command line and edit it using the keyboard.  

• Backspace - Delete the previous character and 
back up one. 

• Left arrow, right arrow - Move the text insertion 
point (cursor) one character to the left or right. 

• TAB does command/filename completion 
– Type ls mores and then TAB 
– UNIX finishes the filename moreseqs 



Command history 

• UNIX stores a history of your commands 
• Up arrow, down arrow - Move up and 

down in the command history.  
– Modify a command if desired 
– Hit <Enter> to redo that command 

• history 10 - lists last 10 commands 
with numbers 

• !135 will rerun command 135 from the 
history list 



Redirecting output 

• What if your command creates lots of output? 
What if you want to store the output? 

• The ">" character redirects your output into a 
file, instead of to the screen 

% grep 'Hsp' a.fasta b.fasta > blah.Hsp 
– Get all lines from 2 files with "Hsp" in them 
– Warning: this will get the description lines for genes 

with Hsp OR "this gene is not at all similar to Hsp" 
• Warning: ">" will overwrite any existing file! 



Redirecting output II - Appending 

• Use ">>" to append 
% grep 'Lys' a.fasta b.fasta >> blah.Hsp 

• Add Lys genes to the list from before 
• Now we can read, edit, play with our 

results 
• OR, don't use an intermediate file at all... 



The Pipe “|” 

• The unix pipe “|” is used to chain together 
multiple commands. 

• The output of one command is used as the 
input for the next command 

% ls –la | more 
– Pass the possibly long output of ls to a more which 

will let you view the output one page at a time 
% ls –ltr | tail -n 1 

– Sort files by modification date ascending, view only 
the most recently modified file 

 



Exercise 5 

• Run the EMBOSS program "transeq" on a 
FASTA sequence file (/opt/emboss/bin/) 
– just type transeq and it will ask you for input 

• BLAST the translated sequence: 
– blastp (protein-protein blast).  
– Blast against the Homo_sapiens.aa database 
– Create output file opsd_human.blp.  
– Blast syntax looks like: 

 blastall –p blastp –i myseq –d my_database [-o my_out] 

• Get hits with "rhodopsin" in their name 
• Count the hits with "rhodopsin" in their name 

(Hint: Use a pipe, and count lines) 
 



Exercise 5 
• Run the emboss program "transeq" 
/opt/emboss/bin/transeq opsd_human.fasta  

• Run BLAST on your sequence 
  blastall –p blastp –i opsd_human.pep –d 
/rodeo/databases/blast/Homo_sapiens.aa -o 
opsd_human.blp 

• Get hits with "rhodopsin" in their name 
grep 'rhodopsin' opsd_human.blp 
• Count hits with "rhodopsin" in their name 
grep 'rhodopsin' opsd_human.blp | wc 
 



File/Directory Naming Practices 

• Use letters, numbers, period and underscore in filenames 
• Use lower-case letters. The file Alpha.txt is different from alpha.txt. 

You'll never remember whether the filename has a capital letter or 
not. 

• Use common file extensions. E.g., save a text file as blah.txt. 
(Required in Windows, NOT in UNIX) 

• Filenames starting with a dot (.) are hidden files. 
• Make names short, but not cryptic. Use correctly-spelled nouns 

when possible. Store inventory in inventory.dat and not inv.dat. 
• Don't use spaces. (For a Windows file with spaces in it, use quotes) 
  cp 'My Windows File.doc' blah.doc 
• Avoid naming a file with the same name as a Unix command. You 

can find out if a name is a Unix command by using the man 
command. 
 



Outline 

• Getting Acquainted: What's Unix? 
• Getting In: Logging into Unix 
• Getting Stuff Done: Commands 
• Getting Around: The Filesystem 
• Getting Fancy: Complex Commands 
• Getting CPU Time: Using the Cluster 



The Orchestra Cluster 

• The cluster has over 160 computers 
• The computers are shared among HMS 

and other Harvard biology researchers. 
• But some researchers are greedy 
• Who decides how to share resources? 
• LSF - Load Sharing Facility  



LSF 

• Users submit their jobs (e.g., BLAST) 
• Jobs go into queues 
• LSF selects which job to run next based on: 

– Current load conditions 
– Resources requirements of the applications 
– How important you are 

• With LSF, remotely run jobs behave just like jobs 
run on the local host. (Even graphical jobs!) 

• With LSF, computer resources are shared fairly, 
without wasting idle computers 



Queues 

• Queues have different maximum run times 
– Your job will be killed if it exceeds that time 

• Queues have different priorities 
• Some queues can only be used by certain users 
• You choose which queue to submit your job to 

– short - 1 hour, high priority 
– normal - 24 hrs, normal priority. Default queue 
– long - unlimited, low priority 
– interact - run graphical programs from the cluster 
– shared_int_2h, shared_2h, all_2h, all_1d   
– sysbio_2h, cbi_unlimited - it's a secret 



LSF Commands 

• See https://wiki.med.harvard.edu/Orchestra/IntroductionToLSF 
• Or just do "man bsub" on portal 

bsub  
bjobs  
bkill 
bhist  
bqueues  
bpeek  
lsid  
lsload  
bhosts  



bsub 

• Most important LSF command. Submit your 
job(s) to the LSF system.  



bsub 

• Just put "bsub" before the command and 
arguments you would type anyway 

• This submits your job to the LSF system. 
• Jobs usually wait in the queue for seconds 

to minutes before starting, depending on: 
– How busy the queue is 
– How many other jobs you're running/have run 

recently 
– Memory or other requirements for your job  



bsub flags 

• bsub [bsub flags] command [command flags] 
[command arguments] 

• Remember to put bsub flags before the command! 
• bsub flags: there are many, but most are unnecessary 
• bsub -q all_1d blastall -p blastp -i in.fasta -d nr  

 send blast job to the all_1d queue  
• bsub -q all_12h -m violin059 blastall ...  

 send blast job to the all_12h queue, run on host violin050  
• bsub -R "rusage[mem=1000]" -o jobout myscript 

 send myscript to default queue, request 1G of memory, and 
send the job's stdout and stderr to the file called "jobout".  
– Note: if -o is not used, and the program tries to write to the 

screen, you will, by default, receive the entire job output via 
email.  



bqueues 

 Bqueues  all queues 
 bqueues -u lp28 only queues you can submit to 
 bqueues -l long  info about the "long" queue 

bqueues: lists the queues in the system. You may not be allowed to use 
all of the queues 



bjobs 

 bjobs -uall 
 list of all jobs 
by all users 

 bjobs -l 45322 
details on a 
particular job 

bjobs: lists your jobs currently active in the system. This 
includes jobs that are pending (waiting to be dispatched for 
execution) and those executing. 



Other commands 

• bhist: Returns a list of your jobs that have 
finished more than 1 hour ago. For jobs that 
have finished within the last hour, use the bjobs 
command.  

• bpeek: Returns the stdout (standard output) of 
your job. Bascially you can "peek" at the output** 
of your job while its running, to see whats 
happening.  
**Unless you specified an output file. 

• bkill: This command kills your job(s). You can 
specify one or more jobs to kill. You can kill all 
your jobs if you specify a zero, like "bkill 0".  



lsid 
• lsid returns the cluster name and the master host. 
• This command verifies that you are connected to 

the LSF cluster. 



lsload 

• lsload returns the current load of the hosts in the 
cluster. It lists the various hosts and how busy 
they are.  



bhosts 
bhosts: Returns the list of hosts (computers) 
that are part of the LSF system.  



Running an LSF job 

# Run a BLAST job on the cluster 

bsub –q all_2h blastall –p blastp –i seqs.pep –d nr –o 
b.out 

 

#!/bin/tcsh 

# This "shell script" runs many BLAST jobs in parallel. 

# It uses one node (one job) for each input FASTA file. 

# If you save it as multiblast.sh then you can run it like 

#    tcsh multiblast.sh 

foreach file ( *fasta ) 
 bsub –q all_2h blastall –p blastp –i $file –o $file.blast.out 

end 



Advanced UNIX Topics 

“UNIX - that undiscovered country, from 
whose Bourne shell no executable returns...” 

 
“Abandon hope, all ye who hit Enter here” 



Standard Output and Error 

some_long_program > long.out 

• If there’s an error, I don’t want to wait for the 
whole program to finish to find out 

• So (well-behaved) programs split output: 
– standard output (stdout) has regular info 
– standard error (stderr) has errors and warnings 

• Both go to the screen by default 
• > and >> only redirect stdout to a file 
• >& and >>& will redirect stdout AND stderr 
• bsub -o redirects stdout and stderr to a file 



Command line editing 

• Control-A (^A): Move cursor to beginning of line. 
Mnemonic: A is first letter of alphabet 

• ^E: End of line 
(^Z was already taken for something else). 
• ^D: Delete character currently under the cursor. 
• ^K: Kill (cut) from the cursor to end of line.  

(Deleted text goes to a clipboard) 
• ^Y: Yank (paste) the clipboard text back onto the 

command line 
 



UNIX Scripting 

• UNIX shell has a whole programming 
language 
– Variables, loops, conditions, etc. 
– Language is slightly different for bash vs. tcsh 
– Examples are tcsh unless otherwise noted 

portal> foreach i (*seqs) 

foreach? echo $i 

foreach? grep –c ‘WAR’ $i 

foreach? end 

 



UNIX Scripting II 

• Create scripts using text editors: 
– pico (good for beginners), vi (Vim), emacs 

• Run scripts by 
– chmod +x blah.sh 
– ./blah.sh 
– Or just tcsh blah.sh 

• Commands, loops, etc. run as if you typed them 
in at the command line 

foreach i (*seqs) 
  echo $i 
  grep –c ‘WAR’ $i 
end 

 
 

 



UNIX Scripting III 

• ./myscript a b c 
– $1 is “a”, $2 is “b”, $3 is “c” 
– print, compare, etc. the $ variables in script 
– The set command creates normal variables 

• Conditions: 
if ($1 == 1) then 
  echo “hi” 
else 
  echo “bye” 
endif 
• Read tcsh (or bash) man pages for much more 
 



Login rc Files 

• Some scripts automatically run when you 
login 
– tcsh: /etc/csh.cshrc, /etc/csh.login, .tcshrc 

– bash: /etc/profile, /etc/bashrc, .bashrc 

• These are just regular shell scripts 
• Put commands in here that you want to 

run every time you login 



The UNIX Prompt 

[botka@portal ~ 1 ]% 

 

• 1st  field – user 
• 2nd field – hostname 
• 3rd field –directory 
• 4th field – command  

  number 
• Prompt character 

 
 

• You can customize your 
prompt (man tcsh) 

 
if ($?prompt) then 

  set prompt='[%n@%m %c %h ]% ‘ 

endif 

 



Environment Variables 

• Information about your account 
• Preferences for your account 
• Locations of databases, files, programs 
• tcsh:  

– setenv BLASTDB ~/my_blastdbs 

– printenv BLASTDB 

• bash:  
– BLASTDB = ~/my_blastdbs 

– echo $BLASTDB 



The UNIX $PATH 

• PATH is an environment variable set up by 
the system 

• Lists the places where the shell looks for 
executable files (ls is really /bin/ls) 

• Set automatically, but you can add to it 
• Change it in your .tcshrc/.bashrc file. 

– bash: set path=( ~/bin $path ) 

– tcsh: setenv PATH “~/bin $PATH” 



File/Directory Permissions 

• Every file and directory has an owner (a 
user) and a group 

• groups akarger – groups I belong to 
• ls -l says each file’s owner/group 
• chown, chgrp changes these values 
botka@portal.77% ls -la 
total 64 
drwxrwxr-x    2 botka    botka        4096 Feb 25 08:06 ./ 
drwxrwx---   48 botka    cgradmin    45056 Feb 25 08:02 ../ 
-rw-rw-r--    1 botka    botka        5332 Feb 25 08:02 moreseqs 
-rw-rw-r--    1 botka    botka        1102 Feb 25 08:06 opsd_human.fasta 
-rw-rw-r--    1 botka    botka        1247 Feb 25 08:02 seqs 



• ls -l says who can do what to a file/directory: 
– r: read, w: write (or delete), x: execute a file, see inside a 

directory 
– categories: user, group, other 

• chmod changes these values 
– chmod o+w seqs (now others can edit the file) 
– chmod 644 seqs (magic to set permissions: see chmod man 

page) 

Permissions II 

botka@portal.77% ls -la 
total 64 
drwxrwxr-x    2 botka    botka        4096 Feb 25 08:06 ./ 
drwxrwx---   48 botka    cgradmin    45056 Feb 25 08:02 ../ 
-rw-rw-r--    1 botka    botka        5332 Feb 25 08:02 moreseqs 
-rw-rw-r--    1 botka    botka        1102 Feb 25 08:06 opsd_human.fasta 
-rw-rw-r--    1 botka    botka        1247 Feb 25 08:02 seqs 



More Shortcuts: Aliases and Links 

• ln -s ../../some/far/away/file ./here 

– ln is just like cp, but it makes a link instead 
– more here will more the far away file, etc. 

• alias cdd ‘cd some/far/away/dir’ 

– put this in your .tcshrc so you always have it 
• alias can also use variables! 

– alias lastlog ‘set lastlog=`ls –dtr 
/usr/local/adm/log/updatedb/{\!:*}* | tail –n 1`; 
echo “Most recent \!:* log: $lastlog”; more $lastlog 



More commands 

• /bin has 81 commands  
– And then there’s /usr/bin, /usr/local/bin... 

• Data manipulation: sort, cut, paste, join, tr 
• File filters: sed, awk 
• Real programming languages: Perl, 

Python 


	Biologists at the computer
	Slide Number 2
	Setup
	Slide Number 4
	Anatomy
	Introduction to UNIX/Linux & the Orchestra Cluster
	Outline
	UNIX/Linux: What is it?
	Why use it?
	UNIX Flavors
	Outline
	How to connect or “login”
	SSH Clients
	The SSH client
	Terminal Window
	Terminal login
	Logging in: 1st Time
	Exercise 1 - Logging in
	Outline
	Commands
	The Shell
	Anatomy of the UNIX OS
	Levels of Representation
	More on the Shell
	Anatomy of a Command
	Anatomy of a Command
	Anatomy of a Command
	Playing with Files
	Exercise 2 - Simple Commands
	Outline
	The UNIX Filesystem
	Filesystem Tree
	Filesystems: UNIX and Windows
	UNIX & Windows, cont.
	UNIX vs. Win: Changing Directories
	UNIX vs. Win: Make a directory
	Home Directory
	Getting Around the Filesystem
	Many Ways to Refer to a File
	Naming Files II
	Exercise 3
	Working with files
	grep
	Exercise 4
	Outline
	Command line editing
	Command history
	Redirecting output
	Redirecting output II - Appending
	The Pipe “|”
	Exercise 5
	Exercise 5
	File/Directory Naming Practices
	Outline
	The Orchestra Cluster
	LSF
	Queues
	LSF Commands
	bsub
	bsub
	bsub flags
	bqueues
	bjobs
	Other commands
	lsid
	lsload
	bhosts
	Running an LSF job
	Advanced UNIX Topics
	Standard Output and Error
	Command line editing
	UNIX Scripting
	UNIX Scripting II
	UNIX Scripting III
	Login rc Files
	The UNIX Prompt
	Environment Variables
	The UNIX $PATH
	File/Directory Permissions
	Permissions II
	More Shortcuts: Aliases and Links
	More commands

