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Large-scale protein expression measure-
ments promise to open exciting areas of
research, ranging from systematic investiga-
tions of post-transcriptional regulation, to
numerical models of protein synthesis and
decay, to detailed functional analyses of the
many proteins expressed by a cell. This
promise is even greater when such protein
expression data are combined with DNA
microarray or protein interaction data—
such combinations offer the tantalizing
promise of quantitative models of cellular
events. Unfortunately, the field of pro-
teomics has been slow to embrace one of the
most important lessons from DNA microar-
rays: open availability of raw data. The avail-
ability of DNA microarray data, coupled
with public genome sequence data, is
arguably one of the primary forces driving
computational research in functional
genomics.

A shortage of public data
The availability of protein expression data
currently lags far behind microarray data.
This is due to both technical and historical
reasons. From a technical standpoint, pro-
tein expression profiling via two-dimen-
sional gels is a challenging approach (even
more so if quantification is desired1),
whereas protein expression profiling by mass
spectrometry (reviewed in ref. 2) is still a
young technology in its early stages of adop-
tion. Historically, protein mass spec-
trometrists have not distributed their raw
protein or peptide mass spectra to the com-
munity, a puzzling omission given that many
other types of mass spectra are available.

Much of our rich understanding of global
gene expression patterns comes not only

from the power of DNA microarrays to gen-
erate those data, but also from the fact that
experimenters deposited their raw data into
the public domain (e.g., as in the Stanford
Microarray Database (SMD)). The easy
availability of mRNA expression data has led
to countless computational analyses of the
same data sets, each teasing out ever more
subtle trends in the data. Examples abound
of mining such data for new insights 
long after publication: evidence for post-
transcriptional gene regulation was found by
comparing newly measured protein expres-
sion levels to previously published mRNA
expression levels3; a considerable source of
variation among cell-cycle controlled genes’
mRNA transcription4 was attributed to the
day upon which each microarray was ana-
lyzed5; microarray data were later reinter-
preted to reveal cell cycle defects among the
original cell populations6. Perhaps the
strongest example of the long-lived utility of
these data has been in the comparisons of
mRNA expression patterns across hundreds
of microarray experiments7,8 to discover
coexpressed systems of genes.

Astonishingly, in spite of the significant
progress over the past decade in high-
throughput protein expression profiling—
notable examples include development of
the isotope-coded affinity tags (ICAT) tech-
nology9 and stable isotope incorpora-
tion10,11 for quantitative proteomics, the
multidimensional protein identification
technology (MudPIT) for analyzing complex
proteomes12, high-throughput expression
profiling of yeast proteins13,14 and semi-
quantitative expression profiling of Plasmo-
dium proteins15,16—there are probably fewer
than 20 mass spectrometry–based protein
expression data sets in the public domain,
none of which is stored in a central location,
and even fewer raw data sets of protein mass
spectra.

For example, the annual Nucleic Acids
Research database issue (2004) lists 39 
distinct databases dedicated to mRNA

expression data, summarizing more than
(roughly) 108 measurements of mRNA
expression, as compared to two databases of
two-dimensional gel electrophoresis protein
expression data, with perhaps 103–104 exp-
ression measurements, and none with mass
spectrometry–based protein expression pro-
files. As a consequence, interpretation of the
original mass spectrometry data by anyone
other than the original experimenters has
been negligible, and proteomics, unlike
genomics, has yet to see the many benefits
gained by reanalysis of the data by computa-
tional and statistical researchers.

The way forward?
In principle, proteomics data can be ana-
lyzed by many of the same techniques as
microarray data. Thus, the computational
analyses proven so powerful for microarrays,
such as clustering of genes and samples by
their expression patterns, analysis of gene
coexpression across experiments, and all
manner of differential and comparative
expression analyses, should be directly appli-
cable to proteomics data. As the correlation
between protein and mRNA expression lev-
els seems to be relatively poor in eukary-
otes3,13,14, the promise is great for
proteomics data to reveal many new trends
among the genes. However, where pro-
teomics really stands to gain is not at such
high-level analyses, but in the actual inter-
pretation of the mass spectra themselves.

Mass spectrometry proteomics data sets
are currently analyzed with essentially the
same algorithms developed 5–10 years ago to
interpret mass spectra (e.g., the SEQUEST17

or Mascot18 algorithms). While this
longevity attests to their usefulness, the lack
of competition is no doubt partly because of
limited access to the mass spectra by the 
statistical community. In a typical high-
throughput mass spectrometry experiment,
far less than half of the spectra are ever satis-
factorily interpreted (e.g., only 17% of
162,000 mass spectra could be interpreted in

The need for a public proteomics repository
John T Prince, Mark W Carlson, Rong Wang, Peng Lu & Edward M Marcotte

John Prince, Mark Carlson, Rong Wang, Peng Lu
and Edward M. Marcotte are at the Center for
Systems and Synthetic Biology & Institute for
Cellular & Molecular Biology, University of
Texas at Austin, Austin, Texas 78712, USA.
e-mail: marcotte@icmb.utexas.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 4 APRIL 2004 471

©
20

04
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy



C O M M E N TA R Y

a recent large scale analysis of the yeast pro-
teome19), underlining the need for improved
algorithms for interpreting these raw data,
and for recognizing when proteins have been
post-translationally modified and interpret-
ing the mass spectra appropriately20. This is
not to argue that advances haven’t been
made (see ref. 21), but clever statisticians
who might have better interpretations of
mass spectral data have a strong barrier to
entering the field—there’s virtually no pub-
lic data. Again, this is in direct contrast to the
DNA microarray field, where free release of
the raw data has allowed many nonexperi-
mentalists to step in and contribute. As a
consequence, microarray hybridization sta-
tistics are now far better worked out (e.g., see
refs. 22,23), and more importantly, are trans-
parent in a way that proteomics statistics
often are not (as pointed out in ref. 2).

Such public data and transparent statistics
are a major goal of numerous proteomics
groups, and data standards for exchanging
protein mass spectra are being developed
(e.g., PEDRo24, PSI-MS XML25, mzXML
(http://sashimi.sourceforge.net)), led in part
by a parent organization (The Human Pro-
teome Organization (HUPO), Montreal,
Canada) dedicated to pushing such stan-
dards forward. Ironically, in spite of a small
number of individual investigators who have
deposited protein expression data at various
sites on the internet (links are given at the
internet site listed below), the field now has
multiple standards established for mass
spectrometry–based proteomics data, yet lit-
tle public data. In the spirit of open data-
bases, such as Genbank, SwissProt, Pfam or
SMD, each of which contributes greatly
toward enabling research in computational
biology, it would seem the time is ripe for a
centralized proteomics database.

A centralized database
Mass spectra are accumulating at a phenom-
enal rate—ThermoFinnegan (Waltham,
MA, USA) alone boasts sales of hundreds of
ion trap mass spectrometers specifically for
MudPIT-style proteomics experiments.
Thus, we believe a centralized database
would quickly be populated. As a gesture
toward initiating a public repository and
with the hopes of encouraging computa-
tional analyses of proteomics data, we’ve
deposited a number of protein mass spec-
trometry data sets into the public domain in
an Open Proteomics Database (OPD) at
http://bioinformatics.icmb.utexas.edu/OPD.

The data residing in OPD represent
diverse proteomics samples—some inter-
preted, some uninterpreted, some on simple

but defined samples to be used for training
algorithms, and some on highly complex
samples, such as whole-cell lysates from dif-
fering organisms. In all, proteomics data
from Escherichia coli, Mycobacterium smeg-
matis, Saccharomyces cerevisiae and Homo
sapiens are represented, with roughly
400,000 total mass spectra, cataloging the
expression of several thousand proteins
overall. All data are freely accessible, with the
intent that computational groups interested
in studying the many computational prob-
lems posed by proteomics will have a source
of protein mass spectra and expression data.
OPD currently contains data from our own
research group, with hyperlinks to other
public protein expression data sets. We invite
submissions of additional data from the
community, particularly mass spectrometry
analyses of whole proteomes or organelles,
so as to begin building up the critical mass of
public proteomics data.
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